Science

Miroir, miroir, dis-moi qui est le plus vert

SCIENCE AU QUOTIDIEN / «Est-il vrai qu’un végétarien propriétaire d’un Hummer fait plus pour l’environnement qu’un utilisateur des transports collectifs carnivore?» demande Gilles Lépine.

Voici une belle question, bien courte et en apparence bien simple, dont on se dit à vue de nez qu’elle doit avoir une réponse qui doit elle aussi être simple et courte. Mais en vérité, dans ce genre de comptabilité il y a toujours de longues, longues listes de facteurs dont on doit tenir compte (nombre de kilomètres parcourus par année, nature et procédés de fabrication des aliments, etc.) et qui impliquent de faire de nombreux choix méthodologiques. Si bien que cette question «pourrait avoir des dizaines de réponses différentes selon les hypothèses considérées», dit Réjean Samson, directeur du Centre international de référence en analyse du cycle de vie (CIRAIG) de l’École polytechnique de Montréal.

Alors faisons quand même quelques petits calculs rapides à partir de moyenne nationales, mais gardons à l’esprit que d’un cas particulier à l’autre, les résultats peuvent varier énormément.

Du strict point de vue des gaz à effet de serre (GES), un Hummer brûle autour de 20 litres d’essence par 100 kilomètres parcourus (l/100 km). En supposant 20 000 km parcourus par année et 2,3 kg de CO2 émis par litre d’essence (d’après le site de Ressources naturelles Canada), cela nous donne 9,2 tonnes de GES par année pour notre conducteur de Hummer.

De quelle quantité de CO2 un usager type du transport en commun est-il «responsable» annuellement ? D’après le site du ministère américain des transports, le «plus polluant» des transports en commun est l’autobus, à 0,18 kg de CO2 par km. Alors mettons les choses au pire et supposons 20 000 km de bus par année pour notre passager — c’est vraiment beaucoup car une bonne partie des usagers du transport en commun vivent proche des centres plutôt qu’en banlieue, mais «mettons que», comme on dit. Cela nous fait un total de 3,6 tonnes de CO2 pour l’année, soit 5 de moins que le Hummer. Et c’est sans compter les gaz à effet de serre émis pendant la fabricant des véhicules, mais passons.

Est-ce que le régime végétarien du propriétaire de Hummer est suffisant pour compenser ? Les bienfaits environnementaux de cette diète varient pour la peine d’une étude à l’autre (encore ici, les choix méthodologiques sont multiples). En 2017, une étude parue dans les Environmental Research Letters parlait de 0,8 tonne de CO2 en moins par année pour quelqu’un qui abandonnerait la viande. Mais cela semble peu aux yeux de Dominique Maxime, lui aussi du CIRAIG, qui travaille plutôt avec le chiffre d’environ 1,5 tonne.

«Ce qui fait la différence, dans les régimes carnés, ça va surtout être les viandes rouges, donc les bovins. C’est parce que la fermentation entérique [dans l’intestin des ruminants, qui est particulier] produit du méthane, un GES 30 fois plus puissant que le CO2. Après, il y aussi toute la gestion des fumiers, qui concerne également le porc et qui est elle aussi une source de méthane», explique M. Maxime.

Dans tous les cas, cependant, c’est largement insuffisant pour compenser les émissions du Hummer. Ou du moins, ça l’est avec les hypothèses que l’on a faites — sur les distances parcourues, sur le fait que le propriétaire du Hummer vit en ville et/ou a accès à des transports en commun efficaces, etc. Mais d’un cas précis à l’autre, cela peut changer du tout au tout.

«En analyse de cycle de vie, on essaie de voir les choses en terme de fonctionnalité, explique M. Maxime. Du point de vue de l’alimentation, on mange tous pour les mêmes raisons, soit se maintenir en santé, peu importe les quantités qu’on ingère et si on est végétarien ou pas. Par contre, pour le choix entre le Hummer et le transport en commun, ce n’est pas forcément la même chose. La personne qui se paye Hummer peut le faire parce qu’elle a besoin, pour son travail, d’un véhicule puissant qui fait du tout terrain. Alors là, on ne peut pas comparer avec le transport en commun ou avec un véhicule ordinaire.»

La comparaison devrait alors se faire avec un véhicule qui sert la même «finalité», comme une grosse camionnette, et pas avec le transport en commun.

En outre, il faut souligner que nous n’avons parlé jusqu’ici que de GES, puisque c’est généralement ce type de pollution que l’on a en tête quand il est question de voitures. Or il y en a d’autres qui sont tout aussi importants, mais ils ne sont pas facilement comparables.

«L’agriculture, ça a d’autres impacts sur l’environnement, comme l’eutrophisation, à cause des quantités importantes de fertilisants utilisés qui vont ruisseler [ndlr : et une fois dans les lacs, vont favoriser la croissance de cyanobactérie et éventuellement «étouffer» les plans d’eau]», dit M. Maxime. Produire de la viande implique de produire des plantes fourragères, et comme la conversion de la matière végétale en matière animale n’est pas très efficace (selon le type d’animal et de fourrage, il faut de 2 à 7 kg de végétaux pour produire 1 kg de viande), manger de la viande implique de cultiver de plus grandes superficies, et donc de contribuer davantage à l’eutrophisation des cours d’eau.

La fabrication et l’usage des voitures n’ont pas ces inconvénients. Mais combien de tonnes de GES «vaut» une éclosion d’algues bleues ? Combien de de CO2 doit-on sauver pour compenser 1 hectare de forêt transformée en champs ? On compare des pommes et des oranges, ici.

* * * * *

Vous vous posez des questions sur le monde qui vous entoure ? Qu’elles concernent la physique, la biologie ou toute autre discipline, notre journaliste se fera un plaisir d’y répondre. À nos yeux, il n’existe aucune «question idiote», aucune question «trop petite» pour être intéressante ! Alors écrivez-nous à : jfcliche@lesoleil.com.

Science

Nos maisons ont-elles «froid» quand il vente?

SCIENCE AU QUOTIDIEN / «Il me semble déjà avoir lu quelque part qu'Hydro-Québec tient compte du vent dans ses prévisions de consommation d'électricité. Est-ce vrai qu’il y a un «refroidissement éolien» pour les maisons?», demande Pierre Larouche, de Mont-Joli.

Oui, il y a une sorte de facteur éolien pour la consommation d’électricité en hiver, et il est tout à fait vrai qu’Hydro Québec en tient compte dans ses prévisions de demande. C’est d’autant plus important que les plus fortes pointes de consommation d’électricité au Québec surviennent justement les matins de grand froid, alors il vaut mieux en tenir compte. (Notons tout de suite que j’écris «une sorte de facteur éolien» parce que le mécanisme n’est pas le même que pour la fameuse «température ressentie» dont on parle dans les bulletins de météo. J’y reviens.)

«Effectivement, dans le passé on a pu constater une grosse différence par grand froid, selon qu’il vente ou non, dit Olivier Milon, chargé d’équipe en prévision de la demande chez Hydro Québec. On a des règles d’approximation pour l’estimer. (…) Si on a une température de -20°C et que le vent passe de 10 à 15 km/h, on va observer une charge supplémentaire d’environ 240 mégawatts à l’échelle du Québec. C’est l’équivalent d’une grosse usine qui ouvrirait son four, par exemple.»

Le vent peut donc faire une bonne différence. Mais c’est tout de même la température qui demeure le facteur météo dominant, dans toute cette histoire. «Si on regarde l’effet d’une variation de 1 °C mesuré à l’aéroport de Dorval, si on passe de -20 à -21 °C par exemple, ça peut faire une différence allant jusqu’à 480 mégawatts», dit M. Milon.

Pour remettre tout cela en perspective, rappelons que les pointes de demande par grands froids, lors des pires moments, peuvent atteindre autour de 38 000 MW. C’est donc dire que, tout seul, 1°C ou 5 km/h de vent ne pousse pas beaucoup la demande vers le haut, mais ensemble ces deux facteurs peuvent finir par «peser lourd» dans la demande d’électricité : entre une température de -5°C sans vent et une journée à -25 avec des vents de 30 km/h, l’écart est de l’ordre de 10 000 MW.

Ce qui fait qu’à température égale, nos maisons coûtent plus cher à chauffer quand il vente, c’est qu’elles ne sont pas parfaitement hermétiques. Il y a toujours des échanges d’air entre l’intérieur et l’extérieur — heureusement, d’ailleurs — et le vent, en s’infiltrant par toutes les ouvertures possibles, va accélérer ces échanges-là, explique M. Milon. C’est un mécanisme assez différent de celui qui empire la sensation de froid sur la peau quand il vente. Et on y arrive à l’instant...

* * * * *

«Est-ce que le refroidissement éolien (ou la température ressentie) dont on parle tant lors des bulletins de météo a un quelconque fondement scientifique ?», demande Jean-Pierre Gagnon, de Chambly.

Oui, la «température ressentie» a un fondement scientifique, malgré son nom qui suggère la subjectivité. L’idée de base, c’est que l’air ne transmet pas bien la chaleur — en fait, c’est plutôt un isolant thermique. À cause de cela, il se forme toujours une couche d’air autour de tout objet qui est plus chaud que l’air ambiant, ce qui en ralentit le refroidissement. Mais quand il vente, les bourrasques dissipent cette couche d’air plus chaud, et l’objet perd donc sa chaleur plus rapidement.

Historiquement, ce sont deux explorateurs américains, Charles Passel et Paul Siple, qui ont étudié et quantifié ce phénomène les premiers. Lors d’un séjour en Antarctique, ils ont accroché des cylindres de plastiques remplis d’eau à l’extérieur de leur campement, en notant le temps que l’eau mettait à geler, de même que la température et la force du vent. À partir de là, ils ont accouché d’une formule mathématique qui exprimait la température qu’il devrait faire sans vent pour que l’eau gèle à la même vitesse.

Le résultat était très imparfait, disons-le. La formule surestimait grandement l’effet du vent par temps froid — à -15°C et des bourrasques à 50 km/h, elle indiquait un équivalent de -41°C alors que la version actuelle donnerait -29°C — et les bouteilles de plastique de Siple et Passel étaient une base un brin boiteuse pour déduire une impression de froid sur la peau.

Pour y remédier, Environnement Canada et la National Oceanic and Atmospheric Administration (États-Unis) ont fini par mener une expérience particulière. Ils ont fait marcher 12 personnes sur un tapis roulant dans une soufflerie réfrigérée pendant 30 minutes, en faisant varier la température (+10, 0 et -10 °C) et la vitesse du vent (2, 5 et 8 mètres par seconde). Tout au long de ce manège, la températures corporelle et du visage des marcheurs était mesurée. C’est sur ces résultats qu’une nouvelle formule plus précise, utilisée depuis 2001, a été formulée. Notons qu’elle tient aussi compte du fait que le vent à 1,5 mètre du sol est en général plus faible qu’à 10 mètres, où les stations météorologiques le mesurent.

Sources :

Francis Massen. The NewWindchill Formula: A Short Explanation, Station météorologique du Lycée classique de Diekirch, 2001. https://bit.ly/2DjuQyt

SA. Wind Chill Calculator, CSGNetwork, 2011. https://bit.ly/1xwv0te

* * * * *

Vous vous posez des questions sur le monde qui vous entoure ? Qu’elles concernent la physique, la biologie ou toute autre discipline, notre journaliste se fera un plaisir d’y répondre. À nos yeux, il n’existe aucune «question idiote», aucune question «trop petite» pour être intéressante ! Alors écrivez-nous à : jfcliche@lesoleil.com.

Science

Fini, le réchauffement?

SCIENCE AU QUOTIDIEN / «Un expert réviseur du GIEC, François Gervais, physicien et professeur émérite de l’Université de Tours en France, souligne une contradiction entre deux rapports du GIEC sur le réchauffement. L'hypothèse officielle retenue est une hausse de 0,2 °C par décennie (en réalité dans une fourchette de 0,1 à 0,3 °C) alors qu'un autre rapport di GIEC (AR5) montre une hausse de 0,04 °C par décennie entre 1998 et 2012, soit 5 fois moins. Je cite François Gervais : «cette hausse infinitésimale se prolonge depuis 20 ans aux fluctuations naturelles près.» Alors qui dit vrai?», demande Jean-Yves Uhel, de Sainte-Foy.

Il s’agit ici d’une entrevue que M. Gervais a accordée à la revue française Valeurs actuelles en octobre dernier, dans la foulée de la publication de son livre L’urgence climatique est un leurre. Dans cet ouvrage, il accuse le Groupe d’experts intergouvernemental sur l’évolution du climat (GIEC, relié à l’ONU) et la climatologie en général d’être inutilement alarmistes.

Il y a plusieurs choses à dire à ce sujet. D’abord, sur le fond, il n’y a absolument aucune contradiction entre la soi-disant «hypothèse officielle» de +0,2 °C par décennie et le rythme observé entre 1998 et 2012. La température moyenne qu’il fait sur Terre connaît des variations naturelles d’une année à l’autre, pour une foule de raisons — le cycle El Nino / La Nina, par exemple. Si bien que si l’on ne retient que des sous-périodes assez courtes, on peut en trouver qui semblent contredire la tendance générale. Mais par définition, c’est en regardant l’ensemble des données que l’on juge de la valeur d’une tendance générale, pas en découpant une petite séquence et en écartant le reste de la série.

L’exercice auquel se livre M. Gervais est d’autant plus douteux, d’ailleurs, que la «pause» du réchauffement à laquelle il fait référence est terminée depuis plusieurs années. Le graphique ci-bas montre l’«anomalie» de température (l’«écart» d’année en année par rapport à la moyenne de 1951-1980) depuis la fin du XIXe siècle. Les données viennent du site de la NASA. Il est vrai, comme le dit M. Gervais, que cette anomalie n’a pratiquement pas bougé entre 1998 (+0,62 °C) et 2012 (+0,61 °C). Mais l’augmentation de température a repris en 2013, l’anomalie a dépassé les 0,7 °C en 2014 et elle a oscillé autour de 0,9 °C de 2015 à 2017. Il est assez incongru, pour dire le moins, de laisser cela «hors de l’image»...

En outre, présenter le rythme de 0,2 °C par décennie comme une «hypothèse officielle» laisse entendre qu’il s’agit d’une simple projection théorique — j’imagine que ce n’était pas l’intention de M. Uhel, je tiens à le souligner. En réalité, ce rythme-là correspond aux observations empiriques, en particulier le fait que le réchauffement s’est accéléré au cours du XXe siècle. Si l’on regarde de nouveau notre graphique, on constate que l’anomalie de température est passée d’entre - 0,2 et - 0,3 °C à la fin du XIXe siècle à environ +0,7 °C dans les années 2010 — un rythme d’environ 0,08 °C par décennie. Si on part des années 50 (autour de -0,1 °C), le rythme grimpe à 0,15 °C par décennie. Et si on prend le tournant des années 80 (+ 0,0 °C) comme point de départ, on obtient environ 0,25 °C par décennie. Alors d’un point de vue factuel, cette «hypothèse officielle» ne me semble ni particulièrement hypothétique, ni très alarmiste.

Il faut dire ici, sur la forme, que M. Gervais n’en est pas à son premier découpage du genre. Dans un autre livre climatosceptique paru en 2013, L’innocence du carbone, il avait plusieurs fois cité des séquences très partielles et soigneusement choisies pour cadrer dans sa trame narrative. Ces «contre-vérités» avaient d’ailleurs été vigoureusement dénoncées par le climatologue français François-Marie Bréon dans Le Monde (https://lemde.fr/2AeRRB2).

Rappelons aussi que, tout scientifique qu’il soit, M. Gervais n’est pas lui-même climatologue. Ses travaux de recherche ont surtout porté sur l’électromagnétisme et la physique des matériaux à l’Université de Tours, où il a longtemps dirigé le Laboratoire d’électrodynamique des matériaux avancés. Ce n’est qu’après sa retraite en 2012, apparemment, qu’il a commencé à publier sur le climat. À cet égard, le titre d’«expert réviseur du GIEC» qu’il s’attribue ne veut pas dire grand-chose puisque n’importe quel universitaire peut envoyer ses commentaires aux GIEC et son nom figurera ensuite dans sa liste des «experts réviseurs».

Alors à la question de savoir «qui dit vrai», il me semble manifeste que l’avis des véritables experts, les climatologues (dont ceux du GIEC), est largement préférable à celui de M. Gervais, sauf tout le respect que je lui dois.

Science

La Terre n'arrêtera pas de tourner, mais...

SCIENCE AU QUOTIDIEN / «Comme on voit toujours la même face de la lune, certains disent que c’est parce qu’elle ne tourne pas sur elle-même. Si c’est vrai, il s’agirait d’une rare exception parce qu’à ma connaissance tous les astres tournent sur eux mêmes, non ? Et j’ai aussi lu quelque part que la vitesse de rotation de la Terre ralentissait petit à petit, si bien que dans quelques millions d’années, elle s’arrêterait complètement et que sa face constamment exposée au Soleil serait brulée tandis que l’autre serait gelée. Qu’en est-il ?», demande Ghislain Gauthier.

Si la Lune ne tournait pas sur elle-même, il s’agirait en effet d’une exception fabuleusement rare. Les astres — qu’il s’agisse de planètes, de lunes ou d’étoiles — se forment lorsque des nuages de gaz et/ou de poussières flottant dans l’espace finissent par s’effondrer sous l’effet de leur propre gravité. Ces nuages vont alors tourner sur eux-mêmes, puis former un disque qui tourne sur lui-même, puis le disque va petit à petit se transformer en sphère. Et le «produit final», la planète, conserve cette rotation.

J’imagine que l’Univers est trop vaste pour qu’on puisse dire qu’il n’existe absolument aucun astre sans rotation. Mais à partir de ce qu’on sait des étoiles, planètes, lunes et astéroïdes que l’on a observés jusqu’à maintenant, la règle est que tous les objets ont une rotation. Et notre Lune n’y fait pas exception.

On peut avoir l’impression contraire parce qu’on en voit toujours la même face, mais c’est simplement parce que sa rotation est synchronisée avec sa «révolution», comme disent les physiciens : elle prend le même temps pour faire un tour sur elle-même (environ 28 jours) qu’elle n’en met pour faire le tour de la Terre (28 jours aussi). Ce n’est pas un hasard s’il en est ainsi — et l’explication nous permettra au passage de comprendre pourquoi il est vrai que la rotation terrestre ralentit peu à peu.

La Terre et la Lune sont d’énormes masses assez rapprochées (à l’échelle cosmique, s’entend) et qui exercent une forte gravité l’une sur l’autre. Cette gravité, bien sûr, explique pourquoi la Lune continue de tourner autour de notre planète, mais elle fait un petit quelque chose de plus : des effets de marée. Sur Terre, on les voit avec le niveau de la mer, mais la gravité lunaire ne fait pas qu’attirer des masses d’eau. La croûte terrestre se soulève également d’environ 30 centimètres au passage de la Lune, ce qui crée une sorte de «bourrelet» de matière qui se déplace au rythme de la rotation de la Terre et de la révolution lunaire.

Maintenant, il y a deux choses à souligner à propos de ce «bourrelet». La première, c’est qu’il représente un surplus de masse, qui exerce donc un surplus de force gravitationnelle. Comparé à la totalité de la gravité terrestre, ce n’est pas grand-chose, mais cela reste une force qui agit. La seconde, c’est que ce bourrelet est toujours légèrement décalé, légèrement en avance par rapport à la Lune parce que la Terre tourne sur elle-même en 24 heures, alors que la Lune met 28 jours à compléter un tour de la Terre.

Et ce dernier point est capital : comme l’orbite lunaire va dans le même sens que la rotation terrestre, cela signifie que le petit surplus de force gravitationnelle du bourrelet fait accélérer la Lune.

Compte tenu des distances et des masses impliquées, l’accélération est infinitésimale. Pour vous donner une idée, sachez que plus un satellite file rapidement sur sa course orbitale, plus il s’éloigne de sa planète — et l’accélération dont on parle ici fait s’éloigner la Lune au rythme de… 3 cm par année. C’est comparable à la vitesse à laquelle poussent les ongles, alors la distance Terre-Lune est d’environ 380 000 km. Presque rien, quoi.

L’accélération de la Lune n’est cependant qu’un des deux côtés d’une même médaille. Car ultimement, d’où vient l’énergie qu’il faut pour la faire orbiter plus vite ? De la rotation terrestre, sur laquelle notre satellite naturel agit comme une sorte d’ancre. À mesure que la Lune accélère, la Terre tourne de moins en moins vite sur elle-même. Encore une fois, c’est infinitésimal, mais c’est suffisant pour faire une différence notable sur de longues périodes.

Des géologues ont d’ailleurs été capables d’en prendre des mesures très concrètes. On connaît en effet des roches qui se sont formées par l’accumulation de sédiments dans des circonstances telles que l’on peut encore discerner, même des millions d’années plus tard, l’effet de chaque marée individuelle. En analysant les caractéristiques des couches de sédiments que chaque cycle de marée a laissé derrière lui dans des roches de l’Australie, un chercheur a pu estimer que chaque journée durait environ 22 heures il y a 620 millions d’années — et même autour de 18 heures il y a 2,45 milliards d’années.

La Terre a eu le même genre d’effet de marée sur la Lune, et en a ralenti la rotation jusqu’à la synchroniser avec sa révoltuion. La différence est que comme la Terre est beaucoup plus massive, elle exerce des forces plus grandes sur la Lune, et son inertie (sa résistance aux forces exercées par la Lune) est plus importante. C’est pourquoi la Terre n’a pas encore synchronisé sa rotation avec l’orbite lunaire. Cela finira éventuellement par arriver, mais il faudra être patient : on estime que cela prendra encore… 50 milliards d’années.

Pour en savoir plus :

- George E. Williams, «Geological Constrait on the Precambrian History of Earth’s Rotation and the Moon’s Orbit», Reviews of Geophysics, 2000, https://bit.ly/2BW1q8P

- Fraser Cain, «When Will Earth Lock to the Moon ?», Universe Today, 2016, https://bit.ly/2AZupaf

* * * * *

Vous vous posez des questions sur le monde qui vous entoure ? Qu’elles concernent la physique, la biologie ou toute autre discipline, notre journaliste se fera un plaisir d’y répondre. À nos yeux, il n’existe aucune «question idiote», aucune question «trop petite» pour être intéressante ! Alors écrivez-nous à : jfcliche@lesoleil.com.