La Terre n'arrêtera pas de tourner, mais...

SCIENCE AU QUOTIDIEN / «Comme on voit toujours la même face de la lune, certains disent que c’est parce qu’elle ne tourne pas sur elle-même. Si c’est vrai, il s’agirait d’une rare exception parce qu’à ma connaissance tous les astres tournent sur eux mêmes, non ? Et j’ai aussi lu quelque part que la vitesse de rotation de la Terre ralentissait petit à petit, si bien que dans quelques millions d’années, elle s’arrêterait complètement et que sa face constamment exposée au Soleil serait brulée tandis que l’autre serait gelée. Qu’en est-il ?», demande Ghislain Gauthier.

Si la Lune ne tournait pas sur elle-même, il s’agirait en effet d’une exception fabuleusement rare. Les astres — qu’il s’agisse de planètes, de lunes ou d’étoiles — se forment lorsque des nuages de gaz et/ou de poussières flottant dans l’espace finissent par s’effondrer sous l’effet de leur propre gravité. Ces nuages vont alors tourner sur eux-mêmes, puis former un disque qui tourne sur lui-même, puis le disque va petit à petit se transformer en sphère. Et le «produit final», la planète, conserve cette rotation.

J’imagine que l’Univers est trop vaste pour qu’on puisse dire qu’il n’existe absolument aucun astre sans rotation. Mais à partir de ce qu’on sait des étoiles, planètes, lunes et astéroïdes que l’on a observés jusqu’à maintenant, la règle est que tous les objets ont une rotation. Et notre Lune n’y fait pas exception.

On peut avoir l’impression contraire parce qu’on en voit toujours la même face, mais c’est simplement parce que sa rotation est synchronisée avec sa «révolution», comme disent les physiciens : elle prend le même temps pour faire un tour sur elle-même (environ 28 jours) qu’elle n’en met pour faire le tour de la Terre (28 jours aussi). Ce n’est pas un hasard s’il en est ainsi — et l’explication nous permettra au passage de comprendre pourquoi il est vrai que la rotation terrestre ralentit peu à peu.

La Terre et la Lune sont d’énormes masses assez rapprochées (à l’échelle cosmique, s’entend) et qui exercent une forte gravité l’une sur l’autre. Cette gravité, bien sûr, explique pourquoi la Lune continue de tourner autour de notre planète, mais elle fait un petit quelque chose de plus : des effets de marée. Sur Terre, on les voit avec le niveau de la mer, mais la gravité lunaire ne fait pas qu’attirer des masses d’eau. La croûte terrestre se soulève également d’environ 30 centimètres au passage de la Lune, ce qui crée une sorte de «bourrelet» de matière qui se déplace au rythme de la rotation de la Terre et de la révolution lunaire.

Maintenant, il y a deux choses à souligner à propos de ce «bourrelet». La première, c’est qu’il représente un surplus de masse, qui exerce donc un surplus de force gravitationnelle. Comparé à la totalité de la gravité terrestre, ce n’est pas grand-chose, mais cela reste une force qui agit. La seconde, c’est que ce bourrelet est toujours légèrement décalé, légèrement en avance par rapport à la Lune parce que la Terre tourne sur elle-même en 24 heures, alors que la Lune met 28 jours à compléter un tour de la Terre.

Et ce dernier point est capital : comme l’orbite lunaire va dans le même sens que la rotation terrestre, cela signifie que le petit surplus de force gravitationnelle du bourrelet fait accélérer la Lune.

Compte tenu des distances et des masses impliquées, l’accélération est infinitésimale. Pour vous donner une idée, sachez que plus un satellite file rapidement sur sa course orbitale, plus il s’éloigne de sa planète — et l’accélération dont on parle ici fait s’éloigner la Lune au rythme de… 3 cm par année. C’est comparable à la vitesse à laquelle poussent les ongles, alors la distance Terre-Lune est d’environ 380 000 km. Presque rien, quoi.

L’accélération de la Lune n’est cependant qu’un des deux côtés d’une même médaille. Car ultimement, d’où vient l’énergie qu’il faut pour la faire orbiter plus vite ? De la rotation terrestre, sur laquelle notre satellite naturel agit comme une sorte d’ancre. À mesure que la Lune accélère, la Terre tourne de moins en moins vite sur elle-même. Encore une fois, c’est infinitésimal, mais c’est suffisant pour faire une différence notable sur de longues périodes.

Des géologues ont d’ailleurs été capables d’en prendre des mesures très concrètes. On connaît en effet des roches qui se sont formées par l’accumulation de sédiments dans des circonstances telles que l’on peut encore discerner, même des millions d’années plus tard, l’effet de chaque marée individuelle. En analysant les caractéristiques des couches de sédiments que chaque cycle de marée a laissé derrière lui dans des roches de l’Australie, un chercheur a pu estimer que chaque journée durait environ 22 heures il y a 620 millions d’années — et même autour de 18 heures il y a 2,45 milliards d’années.

La Terre a eu le même genre d’effet de marée sur la Lune, et en a ralenti la rotation jusqu’à la synchroniser avec sa révoltuion. La différence est que comme la Terre est beaucoup plus massive, elle exerce des forces plus grandes sur la Lune, et son inertie (sa résistance aux forces exercées par la Lune) est plus importante. C’est pourquoi la Terre n’a pas encore synchronisé sa rotation avec l’orbite lunaire. Cela finira éventuellement par arriver, mais il faudra être patient : on estime que cela prendra encore… 50 milliards d’années.

Pour en savoir plus :

- George E. Williams, «Geological Constrait on the Precambrian History of Earth’s Rotation and the Moon’s Orbit», Reviews of Geophysics, 2000, https://bit.ly/2BW1q8P

- Fraser Cain, «When Will Earth Lock to the Moon ?», Universe Today, 2016, https://bit.ly/2AZupaf

* * * * *

Vous vous posez des questions sur le monde qui vous entoure ? Qu’elles concernent la physique, la biologie ou toute autre discipline, notre journaliste se fera un plaisir d’y répondre. À nos yeux, il n’existe aucune «question idiote», aucune question «trop petite» pour être intéressante ! Alors écrivez-nous à : jfcliche@lesoleil.com.